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Abstract	 	

App	store	 is	 a	 center	 location	 for	users	 to	discover,	 to	download	and	 to	 install	
apps	 with	 only	 a	 few	 clicks.	 Categorizing	 mobile	 apps	 according	 to	 their	
functionalities	has	many	benefits	to	both	users	and	developers.	Placing	apps	into	
the	proper	categories	can	help	users	to	quickly	discover	and	explore	the	desired	
apps.	 It	 can	 also	 help	 app	 developers	 to	 analysis	 the	 potential	 features	 and	
technical	trends	within	the	same	domain.	 	 	

Unfortunately,	existing	categorizations	are	ineffective	because	apps	are	assigned	
to	some	categories	arbitrarily	by	developers.	To	help	developers	choose	the	right	
categories,	we	propose	an	API-based	app	categorization	approach	in	this	project.	
This	approach	automatically	clusters	apps	based	on	the	API	calls	extracted	from	
the	APK	files.	 	

We	 empirically	 evaluated	 this	 approach	 against	 the	 state	 of	 the	 art	
description-based	 categorization	 approach	using	10,020	 real	 apps	downloaded	
from	 the	 Google	 Play	 store.	 We	 use	 k-means	 to	 cluster	 9,980	 apps	 and	 unify	
parameters	 for	attribute	and	model	 selections.	We	evaluated	 the	quality	of	 the	
results	 based	 on	 the	 Silhouette	 Coefficient,	 Adjusted	 Rand	 Index	 and	 Adjusted	
Mutual	Information	metrics.	

The	result	shows	that	our	approach	achieved	two	times	higher	Silhouette	scores	
and	as	well	as	improved	the	other	quality	metrics.	As	far	as	we	know,	this	is	the	
first	 paper	 to	 prove	 that	 APIs	 are	 a	 good	 attribute	 for	 app	 clustering	 by	
comparing	it	against	app	descriptions,	which	provides	a	much	lower	granularity	
way	for	automatically	app	categorization.	 	
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1. Introduction	 	
Smartphones	 are	 now	 closely	 tied	 up	 with	 our	 life,	 in	 2015,	 smartphones	 are	
checked	 8	 million	 times	 in	 the	 US	 every	 day	 and	 on	 average,	 46	 times	
contributed	by	each	person	 [20],	which	 is	 an	 indicator	of	 the	extensive	mobile	
usage.	 According	 to	 GSMA,	 total	 $3.1	 trillion	 revenue	 was	 generated	 by	 the	
mobile	industry	in	2015,	which	accounts	for	4.2%	of	the	word’s	global	GDP.	

Due	 to	 the	 increasing	demand	 for	 smartphones,	mobile	apps	generated	a	great	
fortune	 for	 the	 developers,	 shown	 in	 the	 Figure	 1,	 the	 global	 gross	 revenue	
reached	 to	$41.1	billion	 in	2015.	App	economy	will	 see	continuing	growth	and	
mobile	 app	market	 is	 projected	 to	 expand	24	percent	by	 the	 end	of	2016.	The	
expected	annual	gross	revenue	will	exceed	$101.1	billion	world	widely	in	2020.	 	

With	emerging	market	of	mobile	apps,	the	total	number	of	apps	and	developers	
grew	rapidly	for	the	past	five	years	as	well.	As	shown	in	Figure	2,	the	Google	Play	
Store,	 for	 example,	 doubled	 the	number	of	 apps	 in	2014	 compared	with	2013.	
Google	 Play	 ended	 the	 year	 2014	 with	more	 than	 100k	 developers	 compared	
with	Apple’s	App	Store.	 	

App	Store	Categorization	

An	automated	 app	 categorizing	 approach	 according	 to	 their	 functionalities	 has	
many	benefits	to	both	users,	developers	as	well	as	the	app	store.	

l Placing	apps	 into	 the	proper	 categories	 can	help	users	 to	quickly	discover	
and	explore	the	desired	apps	

l A	 well	 chosen	 category	 maximizes	 app’s	 discoverability	 and	 hence	 more	
profit	 for	developers.	Developers	 could	 also	 study	 feature	patterns	 among	
similar	application	for	improvement	and	maintenance.	

l Automatic	 app	 categorization	 enables	 efficient	 regulations	 within	 App	
stores,	for	example,	flagging	any	abnormal	behaviors	or	mismatch	between	
assigned	categories	and	true	categories.	 	
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Figure	1:	Mobile	App	Forecast	–	Annual	Gross	Revenue	[1]	

	

Figure	2:	(LHS)	Total	Number	of	Apps	by	App	Store,	(RHS)	Total	Number	of	Developers	by	App	Store	
(Source:	Business	of	Apps)	[2]	

Unfortunately,	existing	categorizations	are	ineffective	because	apps	are	assigned	
to	 some	 categories	 arbitrarily	 by	 developers.	 Current	 app	 store	 categorization	
approach	 seeks	 to	 cluster	 apps	 based	on	 the	mining	 textual	 features	 extracted	
from	app	descriptions	 [3].	The	 text	descriptions	are	one	of	 the	main	 resources	
for	users	to	understand	the	features	of	one	app.	They	can	be	easily	accessed	from	
app	stores	without	the	need	to	download	the	app.	However,	this	approach	may	
only	provide	a	coarse	granularity	to	some	limitations	of	the	app	descriptions:	 	 	
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1. Claimed	 features	 in	 app	descriptions	 are	not	 always	 truly	 implemented	 in	
source	 code.	 App	 descriptions	 are	 usually	 manipulated	 for	 increasing	 the	
visibility	of	apps	and	attracting	users.	 	

2. App	descriptions	are	natural	 languages	and	 it	 is	still	hard	 to	process	 them	
accurately.	 Sometimes	 descriptions	 could	 be	 written	 in	 other	 languages	
rather	 than	 English,	 which	 makes	 automatically	 categorizing	 apps	 even	
harder.	

Researchers	 have	 also	 tried	 to	 analyze	 app	 categories	 using	 the	 terms	 (i.e.	
identifiers,	 comments)	 extracted	 from	 source	 code	 [14].	 Identifiers	 and	
comments	are	much	more	 reliable	 than	descriptions	while	 there	are	 still	 some	
problems	associated	with	them.	First	of	all,	source	codes	of	apps	are	not	always	
available	 for	 public	 access.	 Furthermore,	 suggesting	 by	 Tan	 et	 al.,	 mismatch	
happens	between	source	code	and	comments.	

To	 overcome	 these	 limitations,	we	 purpose	 an	 in-between	 solution,	 API-based	
approach	 to	 categorize	 applications.	This	 approach	automatically	 clusters	 apps	
based	on	the	API	calls	extracted	for	the	APK	files.	We	believe	API	calls	are	good	
proxies	 representing	 app	 functionalities	 than	 claimed	 features	 extracted	 from	
the	text	descriptions	and	easier	accessing	without	acquiring	source	code.	

In	this	project,	we	investigated	three	types	of	API	usages,	term	frequency,	binary	
frequency	and	sensitive	APIs.	Sensitive	APIs	are	a	small	subset	of	APIs,	which	are	
permissions	 authorized	 by	 users	 and	 listed	 in	 AndroidManifest.xml	 file.	 We	
empirical	evaluated	this	approach	against	the	state	of	the	art	description-based	
categorization	 approach	 using	 10,020	 real	 apps	 downloaded	 from	 the	 Google	
Play	 store	 and	 evaluated	 the	 quality	 of	 the	 results	 based	 on	 the	 Silhouette	
Coefficient,	Adjusted	Rand	Index	and	Adjusted	Mutual	Information	metrics.	 	 	

Goal	and	Objective	

Since	clustering	based	on	API	usage	can	be	a	good	alternative	 to	overcome	the	
limitations	 of	 both	 text	 descriptions-based	 and	 source	 code-based	 approaches.	
The	 general	 aim	 of	 the	 project	 is	 to	 develop	 an	 effective	 API-based	 app	
categorization	 approach.	 The	 detailed	 aims	 and	 objectives	 of	 this	 thesis	 are	 as	
follows:	

1. To	mine	App	descriptions	and	extract	API	calls	from	APK	files	

2. To	apply	machine	learning	techniques	for	cluster	apps	based	on	API	usages	
and	minded	features	

3. To	carry	out	an	empirical	study	on	the	proposed	API	approach	and	state	of	
the	art	description-based	approach	 	
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Contributions	

The	contributions	of	this	thesis	are:	

1. We	 proposed	 a	 practical	 API-based	 app	 categorization	 approach	 using	
machine	learning.	

2. We	implemented	a	framework	automatically	clusters	Apps	supporting	both	
proposed	API-based	approach	and	traditional	feature-based	approach.	

3. We	 created	 a	 benchmark,	 sampling	 10,020	 real	 Android	 apps	 from	 the	
PlayDrone	data	set,	including	metadata	and	compressed	APK	files.	

4. We	built	several	evaluation	matrices	(1)	app-topic	 through	topic	modeling	
(2)	app-token	from	textual	descriptions	(3)	app-api	extracted	from	APK	files	
(4)	app-sensitive_api	for	finally	applying	k-means	clustering.	

5. We	carried	out	an	empirical	study	and	found	that	API	usages,	as	a	proxy	for	
what	is	truly	implemented	by	the	apps,	is	much	more	powerful	in	clustering	
apps	than	text	descriptions,	having	average	Silhouette	Coefficient	0.508	and	
0.236	accordingly.	

6. We	 reported	 a	 case	 study	 on	 YouTube	 app,	 showing	 an	 insight	 what	
properties	making	apps	a	cluster,	in	aspect	of	descriptions,	topics	and	APIs.	
We	also	explained	our	experiment	in	details	with	YouTube	as	an	example.	

Outlines	

The	 remainder	 of	 this	 paper	 is	 structured	 as	 follows:	 Section	 2	 surveys	 the	
related	 research	 work	 in	 the	 app	 store	 analytic	 area	 and	 describes	 the	 main	
categorization	 approaches	 in	 details.	 Section	 3	 introduces	 our	 API-based	
approach,	 applied	 machine	 learning	 algorithms	 and	 implementation	 details.	
Section	 4	 discusses	 the	 research	 question	 followed	 by	 the	 descriptions	 of	 the	
empirical	study.	Section	5	presents	parameters	settings	including	how	we	tuned	
the	parameters.	Section	6	presents	the	answer	to	research	questions	and	results	
discussion.	Section	7	concludes	and	provides	possible	future	directions.	 	
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2. Background	&	Literature	Review	

With	 rapid	 growth	 in	 smart	 phone	 applications,	more	 and	more	 research	 now	
has	 focused	 on	 analyzing	 app	 features	 over	 app	 stores.	 This	 section	 reviews	
work	 in	 the	 field	 of	 app	 store	 analytics.	 It	 begins	 with	 an	 introduction	 of	 the	
general	 research	 directions	 in	 the	 filed,	 followed	 by	 discussion	 on	 App	 Store	
mining,	API	analysis	and	App	categorization.	 	

2.1. General	Directions	

App	stores	provide	rich	information	mainly	on	app	details,	reviews	and	related	
apps.	 App	 details	 include	 app	 interface,	 descriptions,	 new	 release,	 technical	
support,	developer	 information	and	etc..	Reviews	are	 in	two	forms,	stars	rating	
and	verbal	 review.	Related	apps	will	 automatically	 recommend	similar	 apps	 in	
three	ways,	apps	from	single	developers,	‘customer	also	bought’	and	top	apps	in	
single	category.	

Therefore,	analysis	on	app	features	is	beneficial	in	many	ways,	for	examples:	

McMillan	 et	 al	 presented	 a	 system	 for	 rapid	 prototyping	 by	 mining	 feature	
descriptions	 and	 source	 code	 from	 open	 source	 repositories	 as	 well	 as	
recommend	 them	 to	 the	 software	 under	 development.	 Prototyping	 is	 initial	
phase	 of	 software	 development	 but	 typically	 thrown	 away	 and	 therefore,	
prototypes	 need	 to	 be	 created	 quickly	 with	 little	 cost	 and	 effort.	 The	 system	
offers	excellent	solutions	and	facilitates	software	reuse.	[4]	

One	 more	 paper	 working	 on	 recommendation	 system	 is	 to	 support	 domain	
analysis,	which	is	the	process	of	identifying,	organizing,	analyzing,	and	modeling	
features	 common	 and	 variable	 to	 a	 particular	 domain.	 [5]	 Taken	 product	
descriptions	as	input,	association	rule	mining	is	used	to	discover	affinities	among	
features	 across	products	 and	k-nearest	 neighbor	 approach	 is	 applied	upon	 the	
product	profile	to	identify	new	features.	

There	 are	 many	 ultimate	 goals	 associated	 with	 detecting	 similar	 apps,	
including	categorization,	 recommendation,	maintenance	and	etc..	Holtzhauer	et	
al	proposed	an	approach	for	automatically	detecting	Closely	reLated	applications	
in	 ANdroid	 (CLANdroid)	 by	 relying	 on	 advanced	 Information	 Retrieval	
techniques	 and	 five	 semantic	 anchors:	 identifiers,	 Android	 APIs,	 intents,	
permissions,	and	sensors.	[6]	

From	 the	 aspect	 of	 requirements	 elicitation,	 Sarro	 et	 al	 believes	 that
�requirements	 for	 the	 masses;	 requirements	 from	 the	 masses”	 and	 hence	 to	
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study	 the	 lifecycle	 of	 features.	 Sarro	 et	 al	 introduced	 a	 simple	 set-theoretic	
characterization	of	the	lifecycle	and	migratory	behaviors	of	app	features	across	
product	categories,	such	as	migration,	exodus,	extinction,	intransitive,	birth	and	
death.	 Further	 more,	 correlation	 analysis	 also	 highlights	 differences	 between	
trends	relating	price,	rating,	and	popularity.	[11]	

2.2. Mining	App	Description	

App	store	is	a	platform,	which	allows	users	to	discover,	purchase,	download,	and	
install	 software	 with	 only	 a	 few	 clicks.	 Meanwhile,	 it	 is	 also	 a	 mechanism	 for	
developers	 to	 advertise,	 sell,	 and	 distribute	 their	 applications.	 It	 is	 in	 fact	 that	
there	 are	 rich	 source	 of	 information	 in	 app	 stores	 on	 all	 aspects	 of	 business,	
customers	and	 technology.	The	paper	App	Store	Analysis:	Mining	App	Stores	 for	
Relationships	between	Customer,	Business	and	Technical	Characteristics	explores	
the	relationships	among	customer-,	business-	and	technically-	focused	attributes,	
in	more	details,	including	customer	ratings,	number	of	downloads,	price	of	apps	
and	technical	details	in	app	descriptions.	 	

App	description	plays	a	big	role	in	app	marketing	and	in	Google	Play,	it	directly	
affects	Apple	Store	Optimization	(ASO).	ASO	 is	an	app	optimization	process	 for	
search	 results	 in	 app	 stores.	 Therefore,	 a	 good	 app	 description	 must	 include	
relevant	keywords	and	search	terms,	which	makes	your	app	ranking	higher	and	
hence	more	visible	to	potential	customers.	

One	of	the	most	indispensable	factors	in	app	descriptions	is	the	app	feature.	�A	
feature	 is	 a	 claimed	 functionality	 offered	 by	 an	 app,	 captured	 by	 a	 set	 of	
collocated	words	in	the	app	description	and	shared	by	a	set	of	apps	in	the	same	
category.”	Mining	 app	description	 for	 feature	 extraction	 is	 very	popular	 in	 last	
few	years	and	it	becomes	fundament	of	many	further	researches	on	app	stores.	

Since	app	descriptions	are	written	in	natural	language,	Harman	et	al.	developed	a	
simple	four-step	Natural	Language	Processing	(NLP)	algorithm	to	extract	feature	
information	 and	 implemented	 it	 using	 the	Natural	 Language	Toolkit	 (NLTK),	 a	
comprehensive	natural	language	processing	package	in	python.	[8]	

The	 first	 step	of	 the	 algorithm	 is	 to	define	 ‘feature	patterns’	 from	 the	 raw	app	
descriptions.	 Feature	 pattern	 is	 a	 list	 composed	 of	 some	 sentences	 and	 each	
sentence	contains	a	feature.	Feature	list	is	then	tokenized	into	a	lower	case	token	
stream	and	then	apply	filtering.	The	result	of	the	third	step	is	a	set	of	‘featurelets’,	
Harman	 et	 al	 perform	 a	 collocation	 analysis	 to	 find	 words	 that	 associate	
frequently	 from	 the	 refined	 feature	 pattern,	 built	 on	 top	 of	 NLTK’s	
N-gramCollocationFinder	 package.	 Step	 four	 applies	 a	 greedy	 hierarchical	
clustering	algorithm	to	aggregate	similar	featurelets	together.	
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Figure	 3:	 App	 Analysis	 Flows	 for	 paper	 ‘App	 Store	 Analysis:	 Mining	 App	 Stores	 for	 Relationships	
between	Customer,	Business	and	Technical	Characteristics	’	

Figure	3	shows	a	general	workflow	for	the	traditional	app	store	analytic	work.	 	

Phase	 1	 (Data	 extraction):	 A	 customized	web	 crawler	 is	 used	 to	 firstly	 collect	
category	information	from	Blackberry	app	store	and	secondly	download	raw	app	
data	through	the	URLs	of	all	apps	within	each	category.	

Phase	2	(Parsing):	A	set	of	attributes,	 including	category,	description,	price	and	
so	on,	is	extracted	by	parsing	the	raw	data	based	on	some	search	rules.	

Phase	3	(Data	Mining	Features):	Features	are	mined	from	app	descriptions	using	
approach	proposed	by	Harman	(details	in	section	2.2).	

Phase	4	(Analysis):	This	involves	the	analysis	of	the	mined	information.	

In	Harman	et	al.’s	study,	they	found	there	is	strong	correlation	between	ratings	
given	to	apps	and	their	popularity,	that	is	highly	rated	apps	are	more	frequently	
downloaded,	 for	both	 free	 and	non-free	 apps.	 Free	 apps	 are	 rated	 significantly	
higher	than	their	chargeable	counterparties.	Despite	a	mild	correlation	between	
price	 and	 the	 number	 of	 features	 provided,	 limited	 evidence	 has	 emerged	 to	
establish	any	correlation	between	 the	price	and	either	 the	 rating	or	popularity	
for	non-free	 apps.	The	number	of	 features	per	 app	 (and	 the	number	of	 shared	
features	between	apps)	follow	a	power	law.	Despite	the	fact	that	a	large	number	
of	 apps	 are	 zero-rated,	 non-zero	 rated	 apps	 generally	 receive	 positive	 ratings.	
The	power	 law	 is	evidenced	as	more	 ratings	are	presented	 towards	 the	higher	
and	more	favorable	end	of	the	rating	spectrum.	

Mining	app	description	benefits	both	customers	and	developers	 in	many	ways,	
for	 examples,	 to	 investigate	 behavior/description	 mismatches,	 to	 detect	
malicious	applications	and	so	on.	Pandita	et	al.	present	a	 framework,	WHYPER,	
to	 tell	 if	 the	need	 for	 sensitive	permissions	 (mainly	 on	 address	 book,	 calendar	
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and	 record	 audio)	 is	motivated	 in	 the	 application	description	by	using	Natural	
Language	Processing	(NLP)	techniques.	WHYPER	achieves	an	average	precision	
and	 recall	 both	 over	 80%	 for	 above	 three	 permissions.	 These	 results	
demonstrate	great	promise	in	using	NLP	techniques	to	bridge	the	semantic	gap	
between	user	expectations	and	application	functionality,	 further	aiding	the	risk	
assessment	of	mobile	applications.	[7]	

2.3. API/Description	Mismatches	 	

Programmers	 typically	 build	 software	 by	 calling	 Application	 Programming	
Interface	(API)	to	perform	basic	functions,	for	example:	

Without	API:	

An	 app	 finds	 the	 current	 weather	 in	
London	 by	 opening	
http://www.weather.com/	 and	
reading	 the	 webpage	 like	 a	 human	
does,	interpreting	the	content.	

With	API:	

An	 app	 finds	 the	 current	 weather	 in	
London	 by	 sending	 a	message	 to	 the	
weather.com	 API	 (in	 a	 structured	
format	 like	 JSON).	 The	 weather.com	
API	 then	 replies	 with	 a	 structured	
response.	[9]

API	is	released	by	software	companies	and	usually	publicly	available.	Therefore,	
as	a	proxy	for	real	value	of	the	app,	digging	into	API	usage	helps	investigate	app	
features	and	app	categorization.	

Detecting	malware	has	been	the	focus	of	recent	research,	conducted	through	the	
comparison	 of	 static	 code	 and	 dynamic	 behaviour	with	 predefined	 patterns	 of	
malicious	 behaviour.	 However,	 as	 increasing	 emphasis	 has	 been	 placed	 on	
privacy	recently,	program	behaviour	 is	more	difficult	 to	be	simply	classified	as	
beneficial	 or	malicious	 beforehand	 and	 instead	 the	 nature	will	 depend	 on	 the	
current	 context.	 An	 example	 to	 illustrate	 this	 debatable	 nature	 would	 be	
WhatsApp,	 one	 of	 the	 world’s	 most	 popular	 mobile	 messaging	 applications.	
Despite	the	app	takes	all	of	users’	contacts	and	transmits	them	to	some	server,	it	
would	be	difficult	to	consider	the	app	as	malicious.	

‘Malware’	 is	 defined	 as	 acting	 against	 the	 interests	 of	 its	 users	 in	 the	 paper	
Checking	 App	 Behaviour	 against	 App	 Descriptions.	 The	 paper	 compares	
implemented	 app	 behaviour	 to	 advertised	 app	 behaviour,	 using	 the	 natural	
language	description	from	the	Google	Play	Store	and	the	set	of	Android	APIs	 in	
the	 app	 binary	 as	 proxies	 for	 the	 advertised	 behaviour	 and	 implemented	
behaviour	 respectively,	 The	 association	 of	 descriptions	 and	 API	 usage	 enables	
anomaly	 detection	 and	 drives	 observations	 such	 as	 “Unusual	 for	 the	 ‘weather’	
category,	this	application	accesses	the	messaging	API.”	[13]	
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The	approach	presented	in	the	paper	named	as	CHABADA.	CHABADA	identifies	
main	 topics	 (at	most	 four)	 for	 each	 application	by	mining	 its	 descriptions.	API	
information	 is	 extracted	 and	 checked	 for	 outliers	 or	 abnormal	 behavior	 given	
respective	 topic	 cluster	 using	 One-Class	 Support	 Vector	 Machine	 learning	
(OC-SVM)	technique.	 	

Mismatch	happens	between	source	codes	and	comments	as	well	[10].	It	has	been	
conventional	 to	 comment	 source	 code	 in	 software	 development.	 Not	 only	 do	
comments	help	enhance	the	readability	of	code,	explain	code	segments	and	data	
structures,	 they	also	state	assumptions	and	reveal	 the	programmers’	 intention.	
Checking	the	former	type	of	comments	adds	limited	value	due	to	its	consistency	
with	 source	 code	 in	 the	majority	 of	 cases.	 In	 contrast,	 the	 latter	 type	 typically	
provides	more	 insights	 and	usually	 contains	many	 imperative	words	 including	
“must”,	“should”,	“need”,	“ought	to”	etc.	

Requirements,	also	referring	as	rules	 in	the	paper,	 is	extracted	 from	comments	
and	used	to	automatically	detect	inconsistencies	between	comments	and	source	
code,	indicating	either	(1)	bugs,	the	source	code	does	not	follow	the	assumptions	
and	requirements	specified	by	correct	program	comments	or	(2)	bad	comments,	
comments	 that	 are	 inconsistent	 with	 correct	 code,	 which	 can	 confuse	 and	
mislead	programmers	to	introduce	bugs	in	subsequent	versions.	

The	 results	 of	 the	 experiment	 show	 that	 iComment	 produces	 90.8%-100%	
accuracy	in	the	automatic	extraction	of	1832	rules	from	comments	in	the	latest	
versions	 of	 the	 four	 programs.	 In	 total	 it	 has	 detected	 60	 comment-code	
inconsistencies,	33	new	bugs	and	27	bad	comments,	of	which	nineteen,	including	
12	 bugs	 and	 7	 bad	 comments,	 have	 been	 confirmed	 correspondingly	 by	 their	
developers.	

2.4. Categorization	 	

The	 traditional	 way	 of	 clustering	 mobile	 apps	 is	 based	 on	 mining	 textual	
features.	 Al-Subaihin	 et	 al	 proposed	 a	 way	 to	 do	 so	 explained	 in	 details	 as	
following	[3]:	 	

Feature	Extracting:	The	result	of	mining	raw	app	descriptions	 is	a	collection	of	
featurelets	and	each	 featurelet	 is	a	 set	of	 terms	 ! = {!!, !!, . . , !!}.	The	set	of	all	
unique	terms	in	the	corpus	is	constructed	as	 ! = {!!, !!, . . , !!}.	

Feature	Representation:	Each	featurelet	is	converting	to	a	vector	in	which	1	for	
present	of	a	 term	 in	 the	 set	T	and	0	 for	absent.	 Standard	 information	 retrieval	
technique,	Term	Frequency-Inverse	Document	Frequency	(TF-IDF)	is	applied	to	
the	value	of	vector,	by	giving	less	weight	to	common	terms	and	more	importance	
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for	powerful	(ability	of	distinguish)	terms.	

The	final	vector	space	F	is	taking	into	account	of	similarity	between	each	word	in	
the	 featurelet	 and	 each	 term.	 Each	 element	 of	 F	 is	 Wordnet	 similarity	 score.	
Featuring	 clustering:	 After	 selecting	 optimal	 number	 of	 clusters	 K,	 skmeans	 is	
used	to	cluster	the	resulting	Feature-Term	Matrix.	

App	Representation:	An	app-feature	matrix	is	constructed	from	resulting	feature	
clusters,	where	the	rows	are	vectors	corresponding	to	apps.	Each	element	in	the	
AFM	is	a	Boolean	value	to	indicate	whether	the	app	exhibits	a	feature	within	the	
corresponding	feature	cluster.	App	Clustering:	Final	app	clustering	is	conducted	
using	agglomerative	hierarchical	clustering	technique.	

While	in	consideration	of	behavior	and	description	mismatches,	once	the	terms	
extracted	 from	source	code	of	 the	applications	are	used	 for	 categorization.	For	
examples,	words	in	identifiers	and	comments,	which	also	called	attributes	of	the	
application,	 serving	 as	 input	 of	 machine	 learning	 algorithm	 for	 automatic	
categorization.	

An	explicit	assumption	of	above	approach	is	that	the	source	code	for	applications	
is	 always	 available,	 however,	 it	 is	 not	 true	 in	 many	 cases,	 as	 only	 executable	
forms	 of	 commercial	 application	 would	 be	 released	 for	 various	 legal	 and	
organizational	reasons.	

The	 paper	 Categorizing	 Software	 Applications	 for	 Maintenance	 mentioned	 that	
stakeholders	would	 benefit	 from	properly	 classifying	 software	 applications	 for	
several	 reasons	 and	 the	 most	 important	 one	 is,	 grouping	 applications	 into	
categories	 by	 features	 or	 functionalities	 allow	 stakeholders	 to	 decide	 what	
features	would	be	 included	 in	 the	prototype	 and	hence,	more	 easily	 to	predict	
common	bugs.	 	

The	 work	 attempt	 to	 categories	 traditional	 software	 using	 Application	
Programming	Interface	(API)	calls	as	a	set	of	attributes	with	following	reasons:	

l Unlike	the	terms	ie.	names	of	 identifiers,	which	are	selected	arbitrarily	 in	
most	cases	by	programmers,	the	set	of	APIs	is	predefined	as	API	calls	used	
to	 develop	 software	 are	 extracted	 from	 well-defined	 and	 widely	 used	
libraries.	 Therefore	 APIs	 used	 by	 apps	 are	 less	 likely	 to	 be	 arbitrarily	
distributed	in	comparison	to	terms	

l APIs	 have	 already	 been	 grouped	 in	 packages	 and	 libraries	 according	 to	
their	 respective	 functionalities.	 The	 existing	 grouping	 can	 be	 leveraged	
alongside	 with	 machine-learning	 approaches	 to	 assist	 the	 application	
categorization	process.	
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In	 order	 to	 test	 this	 approach,	 Java	 applications	 collected	 from	 two	 software	
repositories	 are	 supporting	 the	 whole	 project,	 including	 745	 closed-source	
applications	 from	 Sharejar	 and	 3,286	 open-source	 applications	 from	
SourceForge.	 API	 information	 is	 extracted	 in	 two	 forms	 referring	 to	 different	
levels	of	granularity,	API	packages	and	API	classes.	Along	with	project	terms	for	
each	application,	the	top	100	attributes	that	best	distinguish	each	category	were	
used	as	input	for	three	different	machine	learning	algorithms.	

API	 packages	 are	 fund	 to	 be	 more	 effective	 attributes	 than	 API	 classes,	 on	
average	20%	better	predictions	for	categorization	of	the	applications.	The	paper	
also	 points	 out	 that	 Support	 Vector	 Machines	 (SVM)	 is	 the	 best-performing	
algorithm	compared	with	the	other	two,	Decision	Tree	and	Naïve	Bayes,	in	both	
repositories	 used	 as	 a	 dataset	 in	 the	 evaluation.	 API	 packages	 are	 a	 good	
alternative	 to	 terms	 (identifiers,	 comments	 extracted	 from	 source	 code)	 in	 the	
case	when	the	terms	are	not	available,	moreover,	the	number	of	API	packages	is	
much	smaller	than	the	number	of	terms.	
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3. Approach	

Figure	4	 shows	 the	overall	 framework	of	
the	 data	 post	 process.	 Our	 framework	
takes	 the	 app	 downloaded	 from	
PlayDrone	 as	 input.	 PlayDrone	 is	 a	
scalable	 Google	 Play	 store	 crawler,	
developed	 by	 Columbia	 University	
Department	of	Computer	Science.	 	

API	extraction:	we	have	written	a	python	
script	 to	extract	API	usages	directly	 from	
APK	 files.	 The	 implementation	 firstly	
decompressed	 APK	 file	 and	 then	 get	
AndroidManifest.xml	 file,	 search	 for	 smali	
file,	 extract	 APIs	 from	 them,	 clean	
duplicated	APIs	and	store	API	information	
in	text	file	under	the	name	of	APK	files.	 	

Smali	 file	 is	 an	 assembler	 for	 the	 dex	 format	 used	 by	 dalvik,	 Android's	 Java	
Virtual	 Machine	 implementation	 and	 hence	 smali	 files	 are	 obtained	 from	
decompiling	 dex	 file.	 Dex	 files	 are	 executables	 included	 in	 Android	 apps	 (APK	
file).	

APIs	 inside	 of	 double	 quotation	 marks	 are	 separately	 stored	 as	 permissions:	
<uses-permission	 android:name="android.permission.**"	 />.	 Furthermore,	 the	
python	 script	 is	 revised	 without	 clean	 duplicated	 APIs,	 which	 is	 counting	 API	
frequencies	(binary	=	False).	

However,	we	had	some	problems	extracting	APIs	with	40	apps,	which	might	be	
caused	by	the	APK	files	downloading	from	the	PlayDrone.	Therefore	we	exclude	
those	40	apps	from	our	sample.	 	

Extracting	 App	Metadata:	All	 the	metadata	 of	 apps	 is	 stored	 in	 JSON	 format.	
JSON	 is	 short	 for	 JavaScript	 Object	 Notation,	 which	 contains	 essential	
information	 about	 an	 application	 in	 logic	 manner,	 such	 as	 application	 name,	
category,	 price,	 rating,	 number	 of	 downloads	 and	 so	 on.	 We	 implemented	 a	
utility	to	extract	all	the	information	we	need	and	exporting	into	SQL	database	in	
a	structured	table,	shown	by	Figure	5.	The	column	names	are	listed	in	Appendix	
1.	

Figure	4�Flow	chart	for	data	post	process	
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Figure	5:	Screenshot	for	App	Metadata	

3.1. Machine	Learning	Techniques	 	

Two	 distinct	 inputs	 are	 taken	 for	 clustering	 app	 descriptions:	 (1)	 App-topic	
matrix:	LDA	discovers	topics	that	occur	in	the	collection	of	app	descriptions	and	
hence	we	have	every	app	belongs	 to	 several	 topics	with	 some	possibilities.	 (2)	
App-token	matrix:	this	method	directly	takes	every	word	in	the	collection	of	app	
descriptions	and	counting	token	occurrences	along	with	optional	dimensionality	
reduction.	

Figure	6	shows	various	matrices	built	from	structured	data.	 	

	

Figure	6:	Matrix	Input	for	K-means	

Latent	Dirichlet	Allocation	(LDA)	is	a	topic	model	that	generates	topics	based	
on	word	frequency	from	a	set	of	documents.	 	

LDA	 assumes	 documents	 are	 produced	 from	 a	mixture	 of	 topics.	 Those	 topics	
then	generate	words	based	on	their	probability	distribution,	like	the	ones	in	our	
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walkthrough	model.	In	other	words,	LDA	assumes	a	document	is	made	from	the	
following	steps:	(1)	determine	the	number	of	words	in	a	document.	Let’s	say	our	
document	has	6	words	(2)	determine	the	mixture	of	topics	in	that	document.	For	
example,	 the	document	might	 contain	1/2	 the	 topic	 “health”	 and	1/2	 the	 topic	
“vegetables”	(3)	using	each	topic’s	multinomial	distribution,	output	words	to	fill	
the	 document’s	 word	 slots.	 In	 our	 example,	 the	 “health”	 topic	 is	 1/2	 our	
document,	 or	 3	 words.	 The	 “health”	 topic	might	 have	 the	 word	 “diet”	 at	 20%	
probability	or	“exercise”	at	15%,	so	it	will	fill	the	document	word	slots	based	on	
those	probabilities.	

Given	this	assumption	of	how	documents	are	created,	LDA	backtracks	and	tries	
to	figure	out	what	topics	would	create	those	documents	in	the	first	place.	[15]	

Hashing	 Vectorizer	 is	 a	 python	 class	 under	 sklearn.feature_extraction.text,	
which	 turns	 a	 collection	 of	 text	 documents	 into	 a	 sparse	matrix	 holding	 token	
occurrence	counts.	This	text	vectorizer	implementation	uses	the	hashing	trick	to	
find	the	token	string	name	to	feature	integer	index	mapping.	

It	 takes	 parameters	 such	 as	 stop_words,	 lowercase,	 norm	 and	 etc.	 while	 IDF	
weighting	 is	 not	 applicable.	 Sometime,	 Hashing	 Vectorizer	 has	 collisions	when	
number	of	features	is	small,	for	example,	24	in	our	case.	 	 	

TF–IDF	 Vectorizer:	 Term	 frequency	 counts	 how	 many	 times	 that	 a	 word	
appears	in	the	document.	Inverse	document	frequency	measures	that	if	the	word	
is	 rare	 or	 common	 across	 the	 collection	 of	 documents.	 Tf-idf,	 namely,	 is	 the	
product	of	 tf	and	 idf,	which	 is	often	used	as	a	weight	 factor	 in	text	mining.	The	
importance	 increases	proportionally	 to	 the	number	of	 times	a	word	appears	 in	
the	document	but	is	offset	by	the	frequency	of	the	word	in	the	corpus.	

Latent	 Semantic	 Analysis:	 the	 class	 sklearn.decomposition.TruncatedSVD	
performs	 linear	dimensionality	reduction	by	means	of	 truncated	singular	value	
decomposition	 (SVD).	 It	 operates	 on	 sample	 vectors	 directly.	 In	 particular,	
truncated	 SVD	 works	 on	 term	 count/tf-idf	 matrices	 as	 returned	 by	 the	
vectorizers,	which	is	known	as	latent	semantic	analysis	(LSA).	

The	 intuition	 behind	 our	 experiment	 is	 that	 default	 categories	 are	 not	 precise	
enough	 to	 reveal	 app	 functionalities.	 Therefore	 we	 applied	 unsupervised	
machine	 learning	 techniques,	 k-means,	 to	 cluster	 apps.	Document	 clustering	 is	
usually	suffering	 from	big	volume,	high	dimensionality	and	complex	semantics.	
Suggested	 by	 [6][17][18],	 k-means	 is	 proved	 to	 be	 efficient	 for	 document	
clustering	 by	 various	 researchers,	 along	 with	 bag-of-words	 approach	 and	
dimensionality	 reduction.	 K-means	 is	 a	 simple	 algorithm	 and	works	well	 with	
large-scale	 datasets.	 Comparing	 with	 hierarchical	 clustering,	 K-means	 is	
computationally	faster	and	producing	tighter	clusters.	 	
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K-means	is	an	unsupervised	clustering	technique	to	partition	a	set	of	n	samples	
into	a	set	of	k	clusters.	K-means	assign	every	sample	to	exactly	one	cluster	using	
Euclidean	distance	by	default,	the	square	root	of	sum	of	squared.	Clustering	tasks	
are	targeting	to	minimizing	intra-cluster	distances	and	maximizing	inter-cluster	
distances,	shown	in	Figure	7.	 	

	

Figure	7:	Intra-cluster	and	Inter-cluster	Distance	Explanation	for	K-means	[16]	

Samples	 are	 randomly	assigned	 to	K	 clusters	 initially	 and	each	 cluster	 roughly	
has	 the	 same	number	of	data	points.	Data	point	will	be	moved	 into	 the	 closest	
cluster	 in	terms	of	distance	to	cluster	centroid.	 It	will	be	remained	inside	of	 its	
own	cluster	if	the	distance	is	already	the	closest	one.	Repeat	the	above	step	until	
a	complete	pass	through	all	the	data	points	results	in	no	data	point	moving	from	
one	cluster	to	another.	 	

However,	k-means	 is	 sensitive	 to	noises	and	often	 stuck	 in	 local	optimum.	The	
choice	of	initial	partition	can	greatly	affect	the	quality	of	final	clusters.	

3.2. Implementation	 	

This	section	details	the	settings	of	our	experiment	and	implementation	process.	

3.2.1. Clustering	through	LDA	 	

Here	we	have	a	series	of	descriptions	for	each	application	and	common	steps	of	
natural	 language	 processing	 are	 applied,	 given	 an	 example	 of	 descriptions	 for	
YouTube:	
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Example	1:	Text	Descriptions	for	YouTube	 	

*	 Personalized	 &#39;What	 to	 Watch&#39;	 recommendations<p>*	
Launch	 a	 never-ending	 YouTube	 Mix	 from	 your	 favorite	 music	
videos<p>*	 Find	music	 faster	 by	 playing	 albums	 or	 artists	 right	 from	
search<p>*	 Cast	 videos	 straight	 from	 your	 phone	 to	 Chromecast	 and	
other	connected	TV	devices	and	game	consoles<p>*	Search	using	 text	
or	voice<p>*	Quickly	find	your	favorite	channels	using	the	guide	

	

Tokenizing:	descriptions	are	firstly	converted	into	lowercase	and	then	a	stream	
of	tokens,	which	could	be	words,	phrases,	symbols,	or	any	meaningful	elements.	
Here	I	remove	single	letter,	digits,	punctuations	and	reserve	words	only.	

Stopping:	stop	words	like	conjunctions	(‘to’,	‘on’)	or	personal	pronouns	(‘it’,	‘we’)	
are	meaningless	 to	 topic	modeling	and	need	 to	be	removed.	 I	use	existing	stop	
words	package	imported	from	nltk.corpus.	

Stemming:	Porter	 stemming	algorithm	 is	 commonly	used	 for	 stemming	words	
to	their	roots.	For	example,	“stemming,”	“stemmer,”	“stemmed,”	all	have	similar	
meanings;	stemming	reduces	 those	terms	to	“stem.”	This	 is	 important	 for	 topic	
modeling,	 which	 would	 otherwise	 view	 those	 terms	 as	 separate	 entities	 and	
reduce	their	importance	in	the	model.	[15]	

The	result	of	above	clean	processing	is	a	 list	of	words	for	each	application.	The	
descriptions	for	YouTube	after	Natural	Language	Processing	look	like:	

Example	2:	Tokenized	Text	Descriptions	for	YouTube	

'person',	 'watch',	 'recommend',	 'launch',	 'never',	 'end',	 'youtub',	 'mix',	
'favorit',	 'music',	 'video',	 'find',	 'music',	 'faster',	 'play',	 'album',	 'artist',	
'right',	'search',	'cast',	'video',	'straight',	'phone',	'chromecast',	'connect',	
'tv',	 'devic',	 'game',	 'consol',	 'search',	 'use',	 'text',	 'voic',	 'quickli',	 'find',	
'favorit',	'channel',	'use',	'guid'	

	

Constructing	a	document-term	matrix�a	document-term	matrix	helps	us	to	
understand	how	frequently	a	specific	term	occurs	within	the	document,	which	is	
a	necessary	to	generate	an	LDA	model.	

The	Dictionary	 function	 under	 the	 package	 gensim	 traverses	 texts,	 assigning	 a	
unique	 integer	 id	 to	 each	 unique	 token	while	 also	 collecting	word	 counts	 and	
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relevant	statistics.	The	result	is	a	series	of	tuples	for	each	app	descriptions.	The	
tuples	 are	 (term	 ID,	 term	 frequency)	 pairs	 and	 now	 descriptions	 for	 YouTube	
become:	

Example	3:	Text	Descriptions	for	YouTube	in	Dictionary	Tuples	 	

[(0,	1),	(1,	1),	(2,	1),	(3,	1),	(4,	1),	(5,	1),	(6,	1),	(7,	1),	(8,	1),	(9,	1),	(10,	
1),	(11,	1),	(12,	2),	(13,	1),	(14,	1),	(15,	1),	(16,	1),	(17,	1),	(18,	2),	(19,	
1),	(20,	1),	(21,	1),	(22,	1),	(23,	2),	(24,	2),	(25,	2),	(26,	1),	(27,	1),	(28,	
1),	(29,	1),	(30,	1),	(31,	2),	(32,	1)]	

	

Applying	the	LDA	model:	given	document-term	matrix,	Ldamodel	is	now	used	
to	generate	topics.	Here	we	set	number	of	topics	returned	to	be	24,	covering	24	
default	 categories.	 Topics	 are	 printed	 with	 the	 top	 seven	 possible	 words	
contained	and	their	possibilities	(see	Appendix	[1]).	Each	application	is	assigned	
to	some	topics	with	possibilities	greater	than	0.05.	 	

Document	 topics	 retuned	 for	 YouTube	 is	 as	 following,	 shown	 in	 Example	 4.	
Descriptions	of	YouTube	belong	 to	 topic	9	with	a	probability	of	56.4%,	 topic	5	
with	a	probability	of	25.9%	and	topic	2	and	4	with	some	small	extend.	 	

Example	4:	Document	Topics	with	Probabilities	for	YouTube	 	

[(2,	0.05188831966799428),	(4,	0.10417479124956981),	(5,	
0.2585344832137057),	(9,	0.56456907253038335)]	

	

Creating	an	app-topic	matrix:	each	application	is	assigned	to	some	topics	with	
certain	 possibilities	 at	 the	 last	 step	 and	we	 then	 are	 able	 to	 generate	 a	matrix	
with	 10020	 rows	 for	 each	 application	 and	 columns	 for	 24	 categories.	 The	
elements	of	matrix	are	the	possibilities	and	most	of	them	are	zeros.	

Grouping	 applications	 with	 similar	 descriptions:	 instead	 of	 grouping	
applications	 with	 plain	 descriptions	 directly,	 here	 we	 use	 topics	 assigned	
(app-topics	matrix)	as	input	for	k-means,	because	few	features	allowing	k-means	
works	better.	[6]	

Performing	metrics	 evaluation:	 three	metrics	are	used	to	evaluate	clustering	
performance,	 which	 are	 Adjusted	 Rand-Index,	 Silhouette	 Coefficient	 and	
Adjusted	Mutual	Information.	 	



	

	 22	

3.2.2. Clustering	through	Vectorizers	

In	 Python,	 there	 are	 many	 classes	 developed	 by	 scikit-learn	 can	 be	 used	 for	
automatically	converting	text	documents	into	term-document	matrix	rather	than	
hand-processing	like	I	did	for	applying	LDA.	

Table	below	summaries	kinds	of	technique	combinations	tried	to	get	best	metric	
results:	

Table	1:	Experiments	on	Vectorizer	Combinations	

	

Hashing	 Vectorizer:	 the	 number	 of	 features	 set	 to	 4k;	 stop	words	 and	 lower	
case	are	applied;	taking	token	frequency	counts	rather	than	binary	occurrences;	
applying	 least	 square	normalization	 if	 tf-idf	not	used.	Experiment	1	performed	
IDF	normalization	on	the	output	of	HashingVectorizer.	

Tf-idf	 Vectorizer:	 the	maximum	number	of	 features	set	 to	4k;	stop	words	and	
lower	case	are	applied;	set	maximum	document	frequency	as	0.5,	which	means	
tokens	 appear	 over	 half	 proportion	 of	 documents	 are	 ignored;	 set	 minimum	
document	frequency	as	2	and	value	2	represents	absolute	counts.	

Performing	 LSA:	 the	 desired	 dimensionality	 of	 output	 data	 set	 as	 24	
temporarily;	 redo	 the	 normalization	 on	 the	 LSA	 results,	which	makes	 k-means	
behave	 as	 spherical	 k-means	 for	 better	 results;	 taking	 the	 sum	 of	
explained_variance_ratio	for	each	of	the	selected	components.	

K-means	is	applied	for	6	combinations.	The	number	of	clusters	set	as	24;	using	
default	method	for	initialization,	'k-means++';	max_iter	and	n_init	are	set	as	200	
and	10	respectively.	 	

3.2.3. Clustering	by	APIs	 	

API	 information	 is	 extracted	 directly	 from	APK	 files	 and	 hence	we	 have	 9,980	
individual	text	files,	each	of	them	contains	APIs	called	by	corresponding	app.	 	

Post	process:	we	loop	through	all	text	files	and	built	a	list	of	lists	storing	APIs.	
Before	 getting	 to	 analysis,	 we	 exclude	 some	 meaningless	 APIs,	 for	 example,	
shown	 in	 the	 following	 table,	 which	 is	 part	 of	 API	 usages	 extracted	 from	
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YouTube,	

Example	5:	Part	of	Extracted	API	Usages	for	YouTube	

'com.google.android.youtube.api.jar.client.RemoteEmbeddedPlayer.m',	
'yv.e',	 'qq.d',	 'android.content.Intent.getAction',	 'fnq',	 'cbd.a',	 'wf.d',	
'java.lang.Object.getClass',	 'java.util.Set.size',	
'com.google.android.youtube.api.jar.client.RemoteEmbeddedPlayer.T',	
'java.lang.String.equals',	
'com.google.android.youtube.api.jar.client.RemoteEmbeddedPlayer.U',	
'com.google.android.youtube.api.jar.client.RemoteEmbeddedPlayer.S',	
'com.google.android.youtube.api.jar.client.RemoteEmbeddedPlayer.ab'	

	

We	get	rid	of	any	individual	API	(1)	 less	than	five	characters	 in	 length;	(2)	 less	
than	 three-string-combine	 structure	 (string.string.string);	 (3)	 remove	 the	
rightmost	substring,	which	is	just	before	the	end	of	whole	API	string,	containing	
only	one	or	two	characters	after	dot.	Above	snapshot	would	become:	 	

Example	6:	Part	of	Processed	API	Usages	for	YouTube	

'com.google.android.youtube.api.jar.client.RemoteEmbeddedPlayer',	
'android.content.Intent.getAction',	 'java.lang.Object.getClass',	
'java.util.Set.size',	
'com.google.android.youtube.api.jar.client.RemoteEmbeddedPlayer',	
'java.lang.String.equals',	
'com.google.android.youtube.api.jar.client.RemoteEmbeddedPlayer',	
'com.google.android.youtube.api.jar.client.RemoteEmbeddedPlayer',	
'com.google.android.youtube.api.jar.client.RemoteEmbeddedPlayer'	

	

To	 unify	 the	 clustering	 technique	 for	 metrics	 comparison,	 we	 applied	 tf-idf	
vectorizer	along	with	dimensionality	reduction	to	APIs.	While,	here,	we	used	two	
ways	 of	 presenting	 term	 frequency,	 binary=True	 and	 binary=False	 (absolute	
term	 counts).	 Binary	 weighting	 enters	 1	 if	 an	 API	 presents	 and	 0	 if	 an	 API	
absents.	

Parameters:	 Tfidf	 Vectorizer	 (max_df=0.5,	 max_features=4000,	 min_df=2);	
TruncatedSVD	 (n_components=24);	 KMeans	 (n_clusters=24,	 init='k-means++',	
max_iter=200,	n_init=10)	

Clustering	 by	 Sensitive	 APIs:	 sensitive	 permissions	 are	 gathered	 from	 file	
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AndroidManifest.xml	 for	 each	 application.	 Taken	 YouTube	 as	 an	 example,	 it	
totally	 requires	 20	 permissions	 to	 access	 users’	 sensitive	 information	 (see	
Appendix	 [2]	 for	 full	 list	 of	 permissions),	 listed	 below,	 which	 is	 extracted	 by	
matching	regular	expression	patterns	and	only	API	package	names	are	reserved.	

Example	7:	Sensitive	APIs	used	by	YouTube	

['INTERNET',	'ACCESS_NETWORK_STATE',	
'CHANGE_NETWORK_STATE',	'ACCESS_WIFI_STATE',	
'WRITE_EXTERNAL_STORAGE',	'RECEIVE_BOOT_COMPLETED',	
'MANAGE_DOCUMENTS',	'GET_ACCOUNTS',	'MANAGE_ACCOUNTS',	
'USE_CREDENTIALS',	'READ_GSERVICES',	'GOOGLE_AUTH',	
'GOOGLE_AUTH',	'GOOGLE_AUTH',	'RECEIVE',	'WAKE_LOCK',	'NFC',	
'CAMERA',	'C2D_MESSAGE',	'READ_EXTERNAL_STORAGE']	

	

Creating	 app-permission	 matrix:	 similarly,	 an	 app-permission	 matrix	 is	
created	 by	 firstly	 assigning	 each	 unique	 permission	 token	 a	 number,	 secondly	
representing	permissions	by	a	list	of	tuples	(id,	frequency),	and	lastly	creating	a	
matrix	with	9338	rows	and	334	columns.	Some	applications	do	not	request	any	
permission	 and	 therefore	 excluded.	 There	 are	 total	 334	 unique	 permission	
tokens	found	for	all	9,338	applications.	

K-means:	 identical	 parameters	 are	 used	 for	 unifying	 clustering	 technique	 and	
comparing	evaluation	metrics.	
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4. Empirical	Study	 	 	
This	section	presents	the	main	research	question	followed	by	the	description	of	
our	data	collection	process	and	the	experimentation	environment.	

Researchers	 so	 far	 are	 suggesting	 various	 approaches	 while	 no	 comparison	
between	 either	 techniques	 or	 attributes.	 To	 investigate	 and	 compare	
categorization	abilities	of	 textual	descriptions	and	APIs,	we	propose	 to	 answer	
the	following	research	question.	

(RQ)	 How	 effective	 is	 the	 API-based	 approach	 comparing	 to	 the	 textual	
based	approach	on	app	categorization?	

We	 designed	 a	 series	 of	 experiments,	 summarized	 in	 the	 table	 below.	 As	 the	
common	 techniques	used	 for	automatically	 categorizing	applications	are	based	
on	 textual	 mining,	 we	 only	 compared	 our	 approach	 to	 this	 type	 of	 approach.	
Table	1	shows	that	we	have	implemented	multiple	machine	learning	techniques	
for	 both	 approaches.	 Before	 answering	 this	 research,	 we	 fist	 carried	 out	 a	
parameter	tuning	experiments	and	find	the	best	methods	for	each	technique	in	
our	empirical	study	to	answer	this	research	question.	 	

Table	2:	Experiment	Details	

	 Method	 Clustering	 Evaluation	

Default	Category	 	 	 	

App	Descriptions	

Latent	Dirichlet	Allocation	

K-means	

Adjusted	Rand	Index,	

Silhouette	Coefficient,	

Adjusted	Mutual	Information	

Vectorizers	(Hashing,	TF-IDF),	Latent	

Semantic	Analysis	

API	Usages	
TF-IDF	Vectorizer	(binary=T	or	F	or	

Sensitive	APIs),	Latent	Semantic	Analysis	

	

We	select	 three	evaluation	metrics	to	access	the	quality	of	 the	category	output,	
comparing	with	the	default	category	from	the	app	store.	 	

(1)	 Adjusted	 Rand	 Index	 is	 an	 evaluation	 metric	 that	 measures	 the	 similarity	
between	two	assignments,	ignoring	permutations	and	with	chance	normalization.	
Adjusted_rand_score	is	symmetric:	swapping	the	argument	does	not	change	the	
score.	ARI	is	range	from	-1	to	+1.	Negative	values	indicate	independent	labelings	
and	positive	values	mean	similar	clustering.	Identical	labeling	is	scored	1.	
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(2)	Silhouette	Coefficient	 is	a	metric	 to	measure	 the	goodness	of	 the	clustering	
method.	 The	 Silhouette	 Coefficient	 for	 a	 sample	 is	 ! = ! − ! !"# !, ! ,	
where	 !	 is	mean	intra-cluster	distance	with	all	other	samples	within	the	same	
cluster	and	 !	 is	the	mean	nearest-cluster	distance,	more	specifically,	to	the	next	
best	fit	cluster	for	the	sample.	 	

The	Silhouette	 score	 return	by	package	 sklearn	 is	 an	average	over	all	 samples,	
which	should	be	in	range	-1	to	+1	and	value	0	indicate	overlapping	clusters.	 	

(3)	Adjusted	Mutual	 Information	 is	a	variation	 from	mutual	 information	and	 is	
normalized	 against	 chance.	 AMI	 calculates	 the	 agreement	 between	 two	
assignments,	true	labels	against	predicted	labels.	AMI	is	ranging	from	0	to	+1	and	
for	two	clusterings	U	and	V,	AMI	is	given	in	formula:	

!"# !,! = !" !,! !![!" !,! ]
!"# ! ! ,! ! !![!" !,! ]	 	

Perfectly	matching	scores	1	and	random	labeling	scores	0.	

Data	Collection	 	

All	applications	used	in	this	experiment	are	download	from	PlayDrone,	a	scalable	
Google	 Play	 store	 crawler,	 developed	 by	 Columbia	 University	 Department	 of	
Computer	Science.	To	craw	the	Google	Play	store,	PlayDrone	employed	Turkers	
(the	workers	of	Amazon’s	Mechanical	Turk)	to	register	for	Google	accounts	from	
a	 diverse	 set	 of	 IPs.	 With	 the	 harvest	 amount	 of	 Google	 accounts	 and	 four	
different	 APIs	 used	 for	 interact	 with	 Google	 Play	 servers,	 PlayDrone	 clawer	
discovers	and	downloads	applications	along	with	 their	metadata.	There	are	six	
components	of	clawer	architecture.	

PlayDrone	is	able	to	download	over	1.1	million	Android	apps	and	decompile	over	
880,000	free	applications	on	a	daily	basis.	To	build	our	database,	we	extract	the	
first	 one	 of	 every	 140	 applications	 over	 total	 1.4	million	 apps	 to	 avoid	 biased	
sampling.	For	every	application,	we	have	a	compressed	APK	file	and	a	JSON	file	
(metadata).	

Totally	we	have	9,980	apps	assigned	to	24	default	categories.	Each	app	belongs	
to	one	category	and	the	top	frequent	category	is	Business.	The	date	of	snapshot	
is	 31st	 October	 2014.	 Our	 framework	was	 implemented	 in	 python	 and	 all	 our	
experiments	were	undertaken	on	a	MacBook	Air	laptop	running	OS	X	EL	Capitan	
10.11.6	(15G31)	(CPU:	1.3	GHz	Intel	Core	i5,	Memory:	8	GB	1600	MHz	DDR3).	 	
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5. Parameter	Tuning	 	

To	carry	out	a	thorough	evaluation,	we	designed	an	initial	experiment	to	tune	the	
machine	learning	algorithms	and	find	the	best	combination	of	machine	learning	
methods	for	both	description-based	and	API-base	approach.	
	
We	 totally	 have	 6	 results	 for	 different	 combinations	 among	 the	 usages	 of	
vectorizers	 and	 dimensionality	 reduction	 technique.	 To	 unify	 the	 experiment	
results	 for	 comparison,	we	 set	 the	maximum	number	 of	 features	 as	 4,000	 and	
number	of	components	output	by	LSA	as	24.	 	

Table	3:	Results	in	term	of	Silhouette	Coefficient	for	Vectorizer	Selection	

	 	

The	 combination	 of	 tf-idf	 vectorizer	 along	 with	 LSA	 gives	 the	 best	 result	 in	
Silhouette	Coefficient,	which	are	highlighted	in	red	in	the	table.	This	combination	
is	referred	as	the	best	combination	in	the	following.	

From	the	table	we	can	tell,	tf-idf	vectorizer	is	much	more	powerful	than	hashing	
vectorizer;	dimensionality	reduction	improves	clustering	quality	a	lot.	

Hashing	 vectorizer	 is	 computational	 efficient	 as	 there	 is	 no	 need	 to	 store	 a	
vocabulary	dictionary	in	memory.	It	also	makes	a	problem,	as	there	is	no	way	to	
compute	the	inverse	transform,	from	feature	indices	to	string	feature	name.	

Collisions	happen	 sometimes,	 especially	when	 the	number	of	 features	 is	 small,	
set	as	4k	in	our	case,	which	is	not	large	enough	for	text	classification	problems.	
Distinct	tokens	can	be	mapped	to	the	same	feature	index.	If	we	set	n_features	as	
2^18,	model	4	performs	slightly	better	but	no	big	change.	

K-means	 is	 very	 sensitive	 to	 feature	 scaling	 and	 that	 in	 this	 case	 the	 IDF	
weighting	helps	improve	the	quality	of	the	clustering	by	quite	a	lot	as	measured	
against	the	“ground	truth”.	

This	 improvement	 is	 not	 visible	 in	 the	 Silhouette	 Coefficient,	 as	 this	 measure	
seem	 to	 suffer	 from	 the	 phenomenon	 called	 “Concentration	 of	 Measure”	 or	
“Curse	of	Dimensionality”	for	high	dimensional	datasets	such	as	text	data.	Other	
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measures	such	as	V-measure	and	Adjusted	Rand	Index	are	information	theoretic	
based	 evaluation	 scores:	 as	 they	 are	 only	 based	 on	 cluster	 assignments	 rather	
than	distances,	hence	not	affected	by	the	curse	of	dimensionality.	[17]	

Curse	 of	 Dimensionality:	 there	 is	a	 trade-off	between	explained	variance	and	
Silhouette	coefficient	by	tuning	number	of	desired	dimensionality	of	output	data.	 	 	

The	 default	 number	 of	 components	 is	 2	 and	 the	 recommended	 number	 of	
components	 for	 LSA	 is	 100.	 The	 table	 below	 is	 generated	 by	 the	 best	
combination	 with	 maximum	 features	 set	 as	 4k.	 It	 is	 obviously	 that	 with	 the	
increasing	 number	 of	 components,	 explained	 variance	 is	 increasing	 while	
silhouette	coefficient	is	decreasing.	

Table	4:	‘Curse	of	Dimensionality’	of	Silhouette	Coefficient	 	

	
	
Parameter	 tuning	 for	 tf-idf	vectorizer:	there	are	three	important	parameters	
we	are	experimenting	with,	max_features,	min_df	and	max_df.	 	

Keeping	min_df	and	max_df	as	default	and	averaging	the	results	of	10	repetitions,	
we	have	the	following	table:	 	

Table	5:	Parameter	Tuning	for	TF-IDF	Vectorizer	in	term	of	max_features	

	

It	 seems	 that	maximum	number	of	 features	has	 little	 influence	on	 goodness	of	
clustering.	 While,	 running	 time	 is	 proportional	 to	 the	 maximum	 allowance	 of	
features.	 	

Keeping	
max_features	
as	 4k	 and	
averaging	 the	
results	 of	 10	
repetitions,	 we	
have	Table	6:	 	

Table	6:	Parameter	Tuning	for	TF-IDF	Vectorizer	in	term	of	max_df	and	min_df	
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It	 is	 obviously	 that	 average	 Silhouette	 Coefficient	 decreasing	 as	 the	 max_df	
increasing.	 Terms	 have	 a	 document	 frequency	 strictly	 higher	 than	 the	 given	
threshold	 are	 ignored	 when	 building	 the	 vocabulary,	 which	 is	 a	 form	 of	
corpus-specific	 stop	 word.	 A	 smaller	max_df	 helps	 to	 filter	 the	 terms	 that	 are	
common	in	the	corpus	and	hence	improve	the	clustering	quality.	 	

We	 group	 9,980	 apps	 into	 24	 topics	 through	 LSA	with	 some	 probabilities	 and	
then	 cluster	 them	 with	 app-topic	 matrix.	 Comparing	 with	 Tf-idf	 Vectorizer	
(max_feature=4000,	max_df=0.5,	min_df=2)	along	with	dimensionality	reduction	
technique,	we	 conclude	 that	 topic	modeling	 is	 slightly	 outperforming	 the	 tf-idf	
vectorizer	in	term	of	clustering	quality,	which	has	average	Silhouette	Coefficient	
around	0.236	and	0.203	respectively.	

Followed	 best-performance	 parameters	 combination	 experimenting	 from	
clustering	text	descriptions,	for	tf-idf	vectorizer,	we	have	a	huge	improvement	on	
goodness	 of	 clustering,	 boosting	 Silhouette	 Coefficient	 to	 around	 0.508	
(averaging	result	for	10	repetitions).	Taken	‘binary=False’	also	helps.	 	

If	 we	 follow	 exactly	 the	 same	 procedure	 but	 replace	 all	 APIs	 by	 the	 subset,	
sensitive	APIs,	we	get	poorer	clustering	quality.	 	
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6. Results	and	Discussion	 	

This	section	reports	our	results	and	provides	answers	to	the	research	question.	
To	 access	 the	 effectiveness	 of	 the	 app	 classification	 approach,	 we	 applied	 the	
best	 combinations	 of	 the	machine	 learning	methods	 and	 settings	 found	 in	 the	
parameter-tuning	phase	to	our	data	sample.	 	

We	ordered	the	topics	and	clusters	by	the	number	of	apps	in	Table	7,	because	it	
is	hard	to	say	that	these	clustering	results	on	every	line	are	matching	each	other,	
for	example,	apps	from	cluster	6	by	LDA,	are	not	necessary	representing	all	the	
BUSINESS	apps.	Clustering	6	might	be	a	group	of	TOOL	apps	with	size	906.	We	
will	present	examples	of	topics	and	clusters	in	the	case	study	later.	 	

Table	7:	Comparison	between	three	Assignments	 	

	

In	general,	the	cluster	sizes	are	quite	different	by	three	assignments	if	we	group	
total	9,980	apps	into	fixed	size	of	categories,	24	in	our	case.	We	observe	that	the	
size	distribution	of	the	description-based	approach	is	closer	to	the	real	category,	
while	 the	size	distribution	of	 the	API-based	approach	 is	very	different.	The	 top	
frequent	 cluster	 returned	 through	 learning	 apps’	 API	 usages	 has	 size	 2,249,	
compared	with	1043	apps	in	BUSINESS	category	and	906	apps	returned	through	
clustering	topics.	

We	now	turn	into	the	similarity	metrics	of	the	approaches.	Adjusted	Rand	Index	
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is	 measuring	 the	 similarity	 between	 two	 assignments	 and	 Adjusted	 Mutual	
Information	 is	 calculating	 the	 agreement	 between	 two	 assignments.	 Both	 ARI	
and	AMI	 are	 comparing	 labels	 from	 two	 clustering	 ignoring	permutations.	 The	
table	 below	 summaries	 averaging	 AMI	 and	 ARI	 from	 10	 repetitions,	 top	 right	
three	 figures	 are	 ARI	 and	 bottom	 left	 three	 figures	 are	 AMI,	 differentiated	 in	
black	and	blue.	Each	pair	out	of	total	three	is	compared.	 	

From	the	 table,	we	can	tell	 that	all	 three	assignments	are	similar	 to	each	other	
since	all	ARIs	are	positives,	but	in	small	extent.	Comparing	default	labels	against	

labels	 generated	 by	
agreement	 between	 those	
two	 are	 slightly	 higher	
than	 other	 pairs	 and	 the	
similarity	 between	 those	
two	 clustering	 says	 that	
way	as	well.	

There	 is	 a	 huge	 improvement	 in	
terms	of	Silhouette	Coefficient	by	
analyzing	API	 usages,	 comparing	
taking	 app-topics	 as	 input	 for	
k-means.	Clustering	quality	through	analyzing	API	usages	doubled	the	clustering	
quality	through	topic	modeling,	which	proves	that	API	calls	are	far	more	effective	
for	automatically	app	categorizing.	 	

Analyzing	API	usages	provides	App	store	a	more	accurate	way	to	categorize	apps	
as	APIs	truly	reveal	functions	implemented	by	the	apps	rather	than	descriptions.	
Collecting	API	 calls	 also	 can	 be	 used	 for	 outlier	 detections,	 for	 example,	 if	 any	
abnormal	usages.	 	

Case	Study	

Let	 us	 take	 a	 deep	 look	 into	 a	 particular	 app,	 category	 and	 cluster.	 The	 LDA	
model	 believes	 that	 the	words	 in	 descriptions	 of	 YouTube	 are	 generated	 from	
topic	9	with	possibility	56.5%,	topic	5	with	possibility	25.9%	and	topic	4	and	2	
with	 possibilities	 around	 10%.	 The	 left	 side	 of	 the	 following	 table	 is	 YouTube	
description	 and	 right	 side	 lists	 top	 frequent	 topic	words.	 It	 is	 very	 reasonable	
that	 topic	 9	 has	 highest	 possibility.	 It	 is	 also	 understandable	 that	 topic	 5	 is	
matching	 a	 new	 version	 of	 YouTube	 launched	 with	more	 device–end	 support.	
Some	key	words	 from	 topic	 4	 and	2,	 such	 as	 ‘use’,	 ‘time’,	 ‘servic’	 are	matching	
that	the	benefit	mention	in	the	description	is	saving	time.	

Table	9:	Silhouette	Coefficient	comparison	for	LDA	and	API	

Table	8:	ARI	and	AMI	across	each	pair	of	three	assignments	
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Example	8:	(LHS)	YouTube	Text	Descriptions	(RHS)	Frequent	tokens	from	Topics	assigned	to	YouTube	

'*	personalized	&#39;what	to	watch&#39;	

recommendations<p>*	launch	a	never-ending	

youtube	mix	from	your	favorite	music	

videos<p>*	find	music	faster	by	playing	

albums	or	artists	right	from	search<p>*	cast	

videos	straight	from	your	phone	to	

chromecast	and	other	connected	tv	devices	

and	game	consoles<p>*	search	using	text	or	

voice<p>*	quickly	find	your	favorite	channels	

using	the	guide'	

(9,	'0.035*video	+	0.035*music	+	0.030*radio	

+	0.020*play	+	0.020*game	+	0.017*app	+	

0.016*player')	(5,	'0.020*app	+	0.020*use	+	

0.015*devic	+	0.015*applic	+	0.013*android	+	

0.012*version	+	0.012*support')	(4,	

'0.019*map	+	0.018*app	+	0.018*locat	+	

0.015*find	+	0.013*inform	+	0.012*citi	+	

0.010*use')	(2,	'0.024*app	+	0.016*time	+	

0.016*messag	+	0.015*use	+	0.014*contact	+	

0.012*servic	+	0.011*track')	

	

Default	 category	 for	 YouTube	 is	 MEDIA_AND_VIDEO,	 cluster	 assigned	 through	
LDA	 is	 19	 and	 cluster	 assigned	 through	 API	 is	 13.	 If	 we	 choose	 YouTube	 as	
benchmark	and	we	shall	believe	that	all	apps	from	MEDIA_AND_VIDEO	should	be	
assigned	to	cluster	19	and	cluster	13.	What	is	really	happening?	

The	following	Venn	diagram	shows	the	overlap	among	three	clusterings.	The	size	
of	 default	 category	 MEDIA_AND_VIDEO	 is	 181,	 which	 has	 30	 overlaps	 with	
cluster	19	through	LDA	and	only	5	overlaps	with	cluster	13	by	API.	That	means	
there	are	30	apps	assigned	to	cluster	19	through	LDA	and	original	belonging	to	
MEDIA_AND_VIDEO.	Overlaps	between	each	pair	of	assignments	are	really	small,	
which	supports	conclusion	that	these	three	assignments	are	indifferent.	

	

	
Figure	8:	Agreement	among	three	assignments	taken	YouTube	as	benchmark	



	

	 33	

What	apps	are	assigned	to	cluster	19?	What	properties	they	got?	

Analyzing	 464	 apps	 from	 cluster	 19	 and	
top	 five	 frequent	 categories	 are	
summarized	 on	 table	 10.	 There	 are	 182	
apps	 originally	 from	MUSIC_AND_AUDIO,	
97	 apps	 from	 SPORTS,	 83	 apps	 from	
ENTERTAINMENT,	 46	 apps	 from	
MEDIA_AND_VIDEO	 and	 13	 apps	 from	
LIFESTYLE.	Why	 those	 apps	 are	 grouped	
into	single	cluster?	

The	 most	 common	 three	 topics	 are	
topic	 9,	 14	 and	 5	 with	 average	
probabilities	 0.470,	 0.198,	 and	 0.185	
respectively.	 Figure	 6	 is	 word	 cloud	
showing	 frequent	 tokens	 from	
descriptions	 within	 cluster	 19.	 The	
bigger	 size	 of	 the	 tokens,	 the	 more	
frequent	 it	 appears	 in	 the	 collection	
of	corpus.	 	

Apps	 descriptions	 from	 cluster	 19	 are	 sharing	 tokens	 such	 as	 ‘radio’,	 ‘music’,	
‘app’,	 ‘video’,	 ‘play’,	 ‘listen’,	 ‘game’,	 ‘player’	 and	 so	 on.	 It	 is	 highly	 possible	 that	
apps	are	grouped	into	cluster	19	if	descriptions	of	apps	containing	variations	of	
those	tokens.	 	 	

What	 APIs	 the	 apps	 are	 using	within	 the	 same	 cluster?	 The	most	 common	 60	
APIs	 used	within	 cluster	 13	 are	 listed	 in	 Appendix	 4.	 Since	 tf-idf	 weighting	 is	
used	 for	 excluding	 common	 APIs	 in	 the	 collection,	 APIs	 with	medium	 level	 of	
occurrences	matters	 in	fact,	neither	top	nor	bottom	APIs.	 	 	 Looking	into	those	
APIs,	we	can	tell	 that	apps	are	grouped	into	cluster	13	because	of	the	behavior	
that	invokes	classes	for	Google	Mobile	Ads,	‘com.google.android.gms.ads’.	 	

Figure	 9:	 Visualized	 frequent	 tokens	within	 cluster	
19	through	LDA	

Table	10:	Top	Five	Categories	within	cluster	19	
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7. Conclusions	&	Future	Work	

Conclusions	

Mobile	App	Store	is	a	unique	platform	mixing	activities	between	developers	and	
users.	Both	of	 them	will	benefit	 from	the	automated	categorization	approaches	
we	 investigated	 in	 this	 paper.	 Previous	 work	 has	 concentrated	 on	 the	 text	
description	based	approach,	which	 is	known	for	 low	granulated	categorization.	
We	 implemented	 two	ways	of	analyzing	 text	descriptions	of	apps.	One	of	 them	
relies	on	topic	modeling	technique.	 	

We	 firstly	 study	 the	 corpus	 and	 generate	 24	 topics	 from	 them.	 Secondly,	 each	
app	 is	 assigned	 to	 several	 topics	with	 some	probabilities	and	 lastly,	we	cluster	
apps	 taking	 app-topic	 matrix	 as	 input.	 The	 other	 method	 cluster	 apps	 using	
processed	 tokens	 directly	 along	 with	 dimensionality	 reduction.	 Under	 this	
method,	 we	 study	 the	 clustering	 power	 of	 two	 vectorizers,	 hashing	 vectorizer	
and	tf-idf	vectorizer.	Later	is	better.	Internal	metric,	Silhouette	Coefficient,	is	the	
main	measurement	we	used	for	evaluating	goodness	of	clustering.	We	have	the	
experiment	 repeated	 for	 10	 times	 and	 take	 the	 average.	 Clustering	 app	 text	
descriptions	with	the	help	of	topic	modeling	seems	outperform	tf-idf	vectorizer	
slightly.	 	

To	overcome	the	limitations,	we	proposed	an	API-based	categorization	approach.	
We	explore	three	ways	of	counting	APIs,	which	are	absolute	API	counts,	binary	
occurrence	and	considering	only	sensitive	APIs.	All	of	 them	are	then	applied	to	
tf-idf	 vectorizer	 and	 dimensional	 reduction.	 When	 comparing	 to	 text-based	
approach,	 it	 turns	 out	 that	 absolute	 API	 counts	 contribute	 to	 the	 highest	
clustering	 quality.	 Comparing	 the	 clustering	 quality	 between	 through	 topics	
modeling	 and	 through	 absolute	 count	 of	 APIs,	 we	 have	 0.236	 against	 0.508	
respectively	 in	terms	of	averaging	Silhouette	Coefficient	 for	10	repetitions.	 It	 is	
obviously	that	API	usages	have	more	power	in	clustering	apps.	We	then	look	into	
other	two	metrics,	Adjusted	Rand	Index	and	Adjusted	Mutual	Information,	across	
each	pair	among	three	assignments.	We	 find	out	 that	all	 three	assignments	are	
really	different	from	each	other.	

It	 is	 beneficial	 to	 include	 API	 checking	 into	 review	 processes	 before	 apps	 are	
available	 to	 the	 public.	 In	 general,	 checking	 API	 usages	 (1)	 strengths	 current	
review	processes	(2)	prevents	malwares	spreading	and	accessing	users’	privacy	
(3)	detects	pirate	apps	 for	copyright	protection	and	 in	particular,	 checking	API	
usages	helps	placing	apps	into	proper	categories	and	flagging	any	abnormal	API	
usages.	 	
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Threats	to	Validity	and	Future	Work	

Sample	 data:	 we	 are	 trying	 to	 get	 real	 world	 data	 and	 build	 our	 database	
unbiased,	while	due	to	limited	time	and	resource,	the	database	have	only	9,980	
apps	 excluding	 40	 apps	 that	 unable	 to	 decompress	 APK	 files.	 Total	 size	 is	 too	
small	compared	with	existing	researches	out	 there	and	the	source	of	dataset	 is	
too	simply.	The	dataset	used	by	[6]	doubles	ours	and	PlayDrone	indexed	887,220	
applications,	which	limits	reliability	of	our	results.	 	 	 	

Moreover,	 the	dataset	we	used	 for	our	experiment	has	 free	apps	only	and	also	
exclude	the	category	Game.	Not	mention	that	free	apps	make	our	dataset	biased.	
Free	 apps	 generate	 profit	 through	 advertisements,	 in-app	 purchases	 or	
donations,	which	would	be	identified	as	undesired	behavior.	It	believes	that	paid	
apps	are	generally	better	in	functionalities	and	more	regulations	on	API	usages.	
Our	experiment	results	hence	are	conservative	and	could	be	improved	by	adding	
more	paid	apps.	

Terms	 from	 source	 code:	 Suggested	 by	 McMillan	 et	 al	 [14],	 words	 from	
comments	 and	 identifiers	 outperformed	 API	 packages.	 Only	 single	 words	 are	
considered	as	attributes	 rather	 than	bigrams	because	of	better	performance	of	
single	 words	 for	 software	 categorization.	 Further	 work	 on	 automatically	
categorizing	Apps	could	consider	terms	as	attributes	if	source	code	is	available.	

APIs:	 API	 calls	 are	 explored	 for	 automatically	 app	 categorizations	 because	we	
believe	that	API	calls	are	practical	attributes.	Not	limiting	to	categorizations,	API	
calls	 also	 could	 facilitate	 many	 other	 researches,	 for	 example,	 malware	
detections,	 study	 app	 features	 and	 etc..	 API	 calls	 are	 much	 more	 stable	 over	
terms	 and	 app	 descriptions,	 because	 APIs	 are	 pre-defined	 and	 named	 in	
structured	ways	by	functions	accordingly.	Further	study	could	extend	API	usages	
for	many	other	studies.	 	
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Appendix	 	

[1]	List	of	column	names	of	CSV	file:	

['key_id',	 'app_index',	 'id',	 'name',	 'developer_name',	 'category',	 'price',	 'rating',	
'number_of_rating',	 'ratings_5',	 'ratings_4',	 'ratings_3',	 'ratings_2',	 'ratings_1',	
'description',	 'whats_new',	 'date_published',	 'size',	 'downloads',	 'comments',	
'version',	'rank_of_downloads',	'permissions']	

[2]	Topics	index	with	top	seven	tokens	return:	

[(0,	'0.051*app	+	0.015*free	+	0.015*use	+	0.014*make	+	0.014*us	+	0.013*get	+	
0.012*like'),	 (1,	 '0.117*com	 +	 0.104*http	 +	 0.080*amp	 +	 0.071*www	 +	
0.046*googl	 +	 0.045*href	 +	 0.036*target'),	 (2,	 '0.024*app	 +	 0.016*time	 +	
0.016*messag	 +	 0.015*use	 +	 0.014*contact	 +	 0.012*servic	 +	 0.011*track'),	 (3,	
'0.011*world	 +	 0.011*year	 +	 0.008*product	 +	 0.007*countri	 +	 0.007*servic	 +	
0.007*offer	+	0.007*one'),	(4,	'0.019*map	+	0.018*app	+	0.018*locat	+	0.015*find	
+	 0.013*inform	 +	 0.012*citi	 +	 0.010*use'),	 (5,	 '0.020*app	 +	 0.020*use	 +	
0.015*devic	+	0.015*applic	+	0.013*android	+	0.012*version	+	0.012*support'),	
(6,	 '0.036*english	 +	 0.033*word	 +	 0.029*languag	 +	 0.020*translat	 +	
0.014*dictionari	+	0.013*learn	+	0.009*applic'),	(7,	'0.019*makeup	+	0.016*hair	
+	0.016*beauti	+	0.013*water	+	0.012*fashion	+	0.011*natur	+	0.009*cloth'),	(8,	
'0.121*quot	 +	 0.083*applic	 +	 0.032*use	 +	 0.025*list	 +	 0.022*agreement	 +	
0.019*licens	 +	 0.017*inform'),	 (9,	 '0.035*video	 +	 0.035*music	 +	 0.030*radio	 +	
0.020*play	 +	 0.020*game	 +	 0.017*app	 +	 0.016*player'),	 (10,	 '0.028*cours	 +	
0.020*light	 +	 0.018*golf	 +	 0.018*measur	 +	 0.015*flashlight	 +	 0.014*flash	 +	
0.013*use'),	 (11,	 '0.061*wallpap	 +	 0.032*live	 +	 0.019*set	 +	 0.018*screen	 +	
0.015*background	+	0.013*free	+	0.012*phone'),	(12,	'0.046*car	+	0.036*vehicl	+	
0.022*part	 +	 0.013*driver	 +	 0.012*drive	 +	 0.012*talent	 +	 0.011*li'),	 (13,	
'0.066*recip	 +	 0.024*cat	 +	 0.018*step	 +	 0.017*weight	 +	 0.015*kitchen	 +	
0.014*food	 +	 0.013*easi'),	 (14,	 '0.032*app	 +	 0.026*news	 +	 0.022*event	 +	
0.017*inform	+	0.014*mobil	+	0.013*latest	+	0.013*school'),	(15,	'0.035*mobil	+	
0.020*account	 +	 0.020*call	 +	 0.018*phone	 +	 0.016*use	 +	 0.016*bank	 +	
0.015*card'),	 (16,	 '0.026*learn	 +	 0.017*kid	 +	 0.015*game	 +	 0.013*number	 +	
0.012*fun	 +	 0.012*children	 +	 0.011*train'),	 (17,	 '0.026*busi	 +	 0.012*issu	 +	
0.011*subscript	+	0.009*current	+	0.009*money	+	0.009*user	+	0.009*purchas'),	
(18,	 '0.050*sound	+	0.040*estat	+	0.029*properti	+	0.028*real	+	0.022*home	+	
0.021*ml	 +	 0.020*rington'),	 (19,	 '0.058*theme	 +	 0.029*quot	 +	 0.023*font	 +	
0.021*widget	 +	 0.021*instal	 +	 0.019*go	 +	 0.017*icon'),	 (20,	 '0.024*licensor	 +	
0.018*church	 +	 0.015*bibl	 +	 0.014*stori	 +	 0.013*book	 +	 0.013*read	 +	
0.013*life'),	 (21,	 '0.065*photo	 +	 0.034*share	 +	 0.031*pictur	 +	 0.027*imag	 +	
0.022*app	+	0.020*friend	+	0.018*facebook'),	(22,	 '0.034*calcul	+	0.019*inform	
+	 0.018*mortgag	 +	 0.015*medic	 +	 0.012*complet	 +	 0.011*profession	 +	
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0.011*help'),	 (23,	 '0.017*attende	 +	 0.015*de	 +	 0.013*exhibit	 +	 0.011*grill	 +	
0.010*bread	+	0.008*deem	+	0.007*atom')]	

[3]	Sensitive	Permissions	for	YouTube:	

'android.permission.INTERNET,	 android.permission.ACCESS_NETWORK_STATE,	
android.permission.CHANGE_NETWORK_STATE,	
android.permission.ACCESS_WIFI_STATE,	
android.permission.WRITE_EXTERNAL_STORAGE,	
android.permission.RECEIVE_BOOT_COMPLETED,	
android.permission.MANAGE_DOCUMENTS,	android.permission.GET_ACCOUNTS,	
android.permission.MANAGE_ACCOUNTS,	
android.permission.USE_CREDENTIALS,	
com.google.android.providers.gsf.permission.READ_GSERVICES,	
com.google.android.googleapps.permission.GOOGLE_AUTH,	
com.google.android.googleapps.permission.GOOGLE_AUTH.youtube,	
com.google.android.googleapps.permission.GOOGLE_AUTH.YouTubeUser,	
com.google.android.c2dm.permission.RECEIVE,	android.permission.WAKE_LOCK,	
android.permission.NFC,android.permission.CAMERA,	
com.google.android.youtube.permission.C2D_MESSAGE,	
android.permission.READ_EXTERNAL_STORAGE'	

[4]	Most	Common	APIs	used	with	cluster	13:	

[('android.util.Log',	437),	
	 ('java.lang.Object',	420),	
	 ('android.app.Activity',	345),	
	 ('android.content.Intent',	344),	
	 ('android.app.Activity.onCreate',	341),	
	 ('java.lang.StringBuilder.toString',	320),	
	 ('java.lang.StringBuilder',	320),	
	 ('java.lang.StringBuilder.append',	318),	
	 ('com.google.android.gms.ads.AdRequest$Builder',	269),	
	 ('com.google.android.gms.ads.AdRequest$Builder.build',	269),	
	 ('com.google.android.gms.ads.AdView.loadAd',	255),	
	 ('android.widget.TextView.setText',	244),	
	 ('android.content.Intent.putExtra',	234),	
	 ('android.widget.Toast.makeText',	230),	
	 ('android.widget.Toast.show',	228),	
	 ('java.lang.String.valueOf',	222),	
	 ('android.net.Uri.parse',	217),	
	 ('java.lang.String.equals',	209),	
	 ('android.widget.Button.setOnClickListener',	201),	
	 ('java.util.ArrayList',	184),	
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	 ('com.google.android.gms.ads.InterstitialAd.show',	179),	
	 ('com.google.android.gms.ads.InterstitialAd.setAdUnitId',	179),	
	 ('com.google.android.gms.ads.InterstitialAd',	179),	
	 ('com.google.android.gms.ads.InterstitialAd.loadAd',	178),	
	 ('android.app.AlertDialog$Builder',	169),	
	 ('android.app.Activity.onDestroy',	164),	
	 ('android.app.Activity.onResume',	163),	
	 ('android.widget.LinearLayout.addView',	160),	
	 ('java.lang.Integer.valueOf',	158),	
	 ('android.app.Activity.onPause',	157),	
	 ('android.view.LayoutInflater.inflate',	152),	
	 ('com.google.android.gms.ads.InterstitialAd.isLoaded',	151),	
	 ('com.google.android.gms.ads.AdListener',	149),	
	 ('android.view.View.findViewById',	148),	
	 ('android.os.Handler',	146),	
	 ('java.io.IOException.printStackTrace',	144),	
	 ('android.content.Context.getSystemService',	144),	
	 ('android.view.MenuItem.getItemId',	142),	
	 ('com.google.android.gms.ads.AdView',	140),	
	 ('com.google.android.gms.ads.InterstitialAd.setAdListener',	138),	
	 ('java.util.ArrayList.add',	138),	
	 ('android.view.MenuInflater.inflate',	136),	
	 ('java.lang.Exception.printStackTrace',	134),	
	 ('android.content.SharedPreferences$Editor.commit',	133),	
	 ('android.content.SharedPreferences.edit',	132),	
	 ('android.app.AlertDialog$Builder.setTitle',	132),	
	 ('com.google.android.gms.ads.AdView.setAdUnitId',	129),	
	 ('com.google.android.gms.ads.AdView.setAdSize',	129),	
	 ('android.app.AlertDialog$Builder.setPositiveButton',	127),	
	 ('java.util.ArrayList.get',	127),	
	 ('android.app.AlertDialog$Builder.setMessage',	123),	
	 ('android.app.AlertDialog$Builder.create',	120),	
	 ('android.content.Intent.setType',	119),	
	 ('java.lang.Integer.intValue',	114),	
	 ('java.lang.String.length',	112),	
	 ('java.util.Iterator.next',	110),	
	 ('android.widget.ListView.setAdapter',	110),	
	 ('java.util.Iterator.hasNext',	109),	
	 ('java.util.List.add',	108),	
	 ('android.content.res.Resources.getString',	107)]	
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